ACADEMIC PLANNER & UNITIZATION OF SYLLABUS

DEPARTMENT OF ELECTRONICS

ACADEMIC YEAR 2024-'25 (6th Semester) (January to July)

Prepared by: Dr. Arindam Sen, Associate Professor, Dept. of Electronics

Course Title: Numerical Techniques

Course Learning Objectives

- Apply numerical methods to obtain approximate solutions to mathematical problems.
- Analyze and evaluate the accuracy of common numerical methods.
- Implement numerical methods in MATLAB.
- Write efficient, well-documented MATLAB code and present numerical results in an informative way.

Course Learning Outcomes: At the end of this course, students will be able to

- CO1: Understand the common numerical methods and how they are used to obtain approximate solutions to mathematical problems.
- CO2: Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.
- CO3: Analyze and evaluate the accuracy of common numerical methods.

MONTH/YEAR	WEEK	TOPICS TO BE TAUGHT
March 2023	2	a. Introduction to Numerical Methods b. Floating point representation of numbers
	3	a Error in numerical computation b. Types of error c. Error propagation
	4	a. Solution of Transcendental and Polynomial Equations b. Bisection method c. Problems and solutions of Bisection methods d. Program to implement Bisection Method using C (Practical)
	5	a. Secant Method b. Regula Falsi Methods c. General Iteration Methods d. Program to implement Secant Method using C (Practical)
MONTH/YEAR	WEEK	TOPICS TO BE TAUGHT
April 2023		 a. Newton Raphson method, Rate of convergenc b. Newton's Method for Systems c. Method for Complex Roots d. Roots of Polynomial Equations e. Program to implement Regula falsi method using C (Practical)
	2	a. Interpolation and Polynomial Approximations b.Taylor Series and Calculation of Functions, c. Langrange Interpolation d. Program to implement Newton Raphson Method using C (Practical)
	3	a. Newton Forward Difference Interpolation formula b. Newton Backward Difference Interpolation
	4	a. Newton Divided Difference Interpolation formula b. Problem solving approach

	5	a. Curve Fitting: Least square fitting, b. Interpolation by Spline functions c. <mark>Class Test</mark>
MONTH/YEAR	WEEK	TOPICS TO BE TAUGHT
May 2023	1	a. Introduction to Numerical Integration b. Trapezoidal Rule, Error bounds and estimate for the Trapezoidal rule c. <mark>Program to implement Trapezoidal rule using C (Practical)</mark>
	2	b. Simpson's Rule b. Error in Simpson's rule c. <mark>Program to implement Simpson's rule using C (Practical)</mark>
	3	a. Introduction to Numerical Differentiation b. Finite difference method c. Applications to electrostatic boundary value problems d. <mark>Program to implement Euler-Cauchy Method using C (Practical)</mark>
	4	a. Numerical methods for first order differential equations b. Euler-Cauchy Method c. Heun's Method
	5	a. Classical Runge Kutta method of fourth order b. Methods for system and higher order equations c. <mark>Class Test</mark>
MONTH/YEAR	WEEK	TOPICS TO BE TAUGHT
	1	a . Numerical Methods in Linear Algebra b. Linear systems Ax=B
	2	a. Gauss Elimination b. Partial Pivoting
	3	a. LU factorization b. Doolittle's method
June 2023	4	a. Crout's Method b. Cholesky's method
	5	a. Finding Matrix Inversion b. Gauss-Jordon c. Gauss-Seidel Iteration d. <mark>Program to implement Gauss-Jordon Method using C (Practical)</mark> e. <mark>Class Test</mark>
MONTH/YEAR	WEEK	TOPICS TO BE TAUGHT
July 2023	1	a. Jacobian Iteration b. Finding Eigen value using Power Method c. <mark>Program to implement Gauss-Seidel Iteration using C (Practical)</mark>
	2	
	3	
	4	
	5	

Suggested Books:

1. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons (1999).

2. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods: Problems and Solutions, New Age International (2007).

3. B.S. Grewal, Numerical Methods in Engineering and Science with Programs in C and C++, Khanna Publishers (2012).